Выравнивание Рядов Динамики

Содержание
  1. Динамические ряды — краткое руководство по анализу изменений явлений во времени
  2. Методика анализа динамических рядов
  3. Способы выравнивания динамических рядов
  4. Оценка точности аппроксимации возможна с помощью нахождения
  5.  Вычисление основных показателей динамического ряда
  6. Аналитическое выравнивание рядов динамики – часть 2
  7. Графическое представление полиномов n-порядка
  8. Рассмотрим на примере аналитическое выравнивание ряда динамики по прямой с переносом точки отсчета в середину ряда:
  9. Ряды динамики
  10. Пример ряда динамики
  11. Виды рядов динамики
  12. Ряды динамики (5)
  13. Методы выравнивания рядов динамики
  14. Метод укрупнения интервалов времени (гр. 3)
  15. Метод скользящей средней
  16. Метод аналитического выравнивания
  17. Ряды динамики в статистике
  18. Понятие о рядах динамики
  19. Пример ряда динамики и его характеристика
  20. Правила построения рядов динамики
  21. Средние характеристики ряда динамики
  22. Показатели анализа рядов динамики
  23. Анализ сезонных колебаний
  24. Индекс сезонности
  25. Приведение рядов динамики к одинаковому основанию
  26. Аналитическое выравнивание ряда динамики
  27. Примеры решения задач на тему «Ряды динамики в статистике»

Динамические ряды — краткое руководство по анализу изменений явлений во времени

Выравнивание Рядов Динамики

Даная статья понятными и простыми терминами объяснит, что же такое динамические ряды, для чего они нужны, как производится анализ полученных данных и какие возможности открываются перед теми, кто владеет методикой данного анализа.

Любое явление в области здравоохранения нуждается в тщательной оценке, и здесь знания анализа динамических рядов неоценимы.

С помощью динамического ряда можно оценить и спрогнозировать проблематику любой нозологической единицы, сформировать дальнейшую тактику лечения и меры профилактики заболеваний.

Динамический ряд — ряд однородных величин, характеризующих изменение явления во времени.

Целью анализа динамических рядов является:

  • выявление закономерности изменения изучаемого явления во времени;
  • прогнозирование (экстраполирование) полученных данных на последующиегоды.

Числовые значения, составляющие динамический ряд, называются уровнями ряда (у).

Типы динамических рядов:

  1. В зависимости от вида уровня ряда:

а) простые (уровень ряда выражен абсолютными числами);

б) сложные (уровень ряда выражен обобщающими коэффициентами).

  1. В зависимости от способа формирования временного интервала:

а) моментные (данные собираются на определенный момент времени);

б) интервальные (данные собираются за определенный период времени).

  1. В зависимости от выраженности изменений явления во времени (определя­ется по коэффициенту корреляции между временем и изучаемым явлением).

а) с выраженной тенденцией (r =0,7 — 1,0);

б) с неустойчивой тенденцией (r =0,3 — 0,69);

в) с отсутствием тенденции ( r = 0 — 0,29).

Основное требование, предъявляемое к анализируемым динамическим ря­дам, заключается в сопоставимости их уровней. Для оценки сопоставимости прово­дят предварительный анализ полученных данных по следующим критериям:

  • единство территории, на которой проводился сбор данных;
  • единая методология учета данных;
  • единые временные интервалы, в течение которых проводилась регистрацияданных.

Методика анализа динамических рядов

Методика аналитики предусматривает выполнение последовательных действий:

  1. Представить полученные данные графически и выявить форму зависимости изучаемого явления от времени.
  2. Оценить наличие и силу корреляции изучаемого явления от времени.
  3. Если установлено, что ряд обладает выраженной тенденцией, проводят анализ компонентов динамики ряда: основной тенденции (эволюции, тренда), кратковременных систематических движений и случайных колебаний. Основная задача анализа — разделить эти компоненты и выявить основную закономерность изменения явления во времени. Для выявления и описания тренда динамический ряд подвергают обработке — выравниванию.

Способы выравнивания динамических рядов

Чтобы произвести выравнивание динамических рядов потребуются следующие действия:

  • Укрупнение временных интервалов (периодов), в течение которых изучается явление.
  • Сглаживание ряда методом скользящей средней.
  • Аналитический способ.

При этом способе на основании фактических данных подбирается наиболее подходящее для отражения тенденции развития явления математическое уравнение (аппроксимирующая функция), которое принимается за модель развития явления во времени. Т.е.

уровни ряда рассматриваются как функция времени, и задача выравнивания сводится к определению вида функции, отысканию ее параметров по эмпирическим данным и расчету по найденной формуле теоретических выравненных уровней.

Наиболее часто используются следующие функции:

а) линейная зависимость:

б) экспоненциальная зависимость:

в) показательная зависимость:

г)  параболическая зависимость:

и др.

где  a0, a1, а2 — параметры уравнения;

у – теоретический уровень;

t – временной интервал.

В качестве примера возьмем линейную зависимость и проведем выравнивание, используя для нахождения параметров уравнения а0 ,а1  способ наименьших квадратов.

Способ наименьших квадратов позволяет найти теоретическую кривую, максимально приближенную к эмпирической, а условие минимума суммы квадратов отклонений теоретических данных от фактических позволяет свести математическое решение задачи к системе нормальных уравнений:

где  у — уровни фактического ряда;

n — количество уровней;

t — порядковый номер временного периода.

Эта система уравнений легко упрощается, если «t» присвоить ранги (порядковые номера), ведя отсчет времени от середины ряда.

При нечетном ряде середина обозначается через 0, а отсчет рангов ведется через единицу с соответствующим знаком в ту или иную сторону от середины (например: -5,-4,-3,-2,-1, 0,+1.+2,+3,->:4,+5).

При четном ряде две средние временные точки обозначаются через +1 и -1, а остальные ранги присваиваются через две единицы (например: -5,-3,-1,+1,+3,+5).

При отсчете времени от середины ряда   St = 0  и система нормальных уравнений принимает вид:

Отсюда находим параметры уравнения:

Подставляя в уравнение у = а0 + а1t  вместо «t» его ранги, находим выравненные (теоретические) значения уровней ряда и строим теоретическую кривую выравненного динамического ряда.

При использовании аналитического способа всегда отмечается отклонение теоретических уровней от фактических уровней ряда, которое может быть обуслов­лено как случайными колебаниями, так и неправильно подобранным аппроксими­рующим уравнением. В связи с этим заключительным этапом выравнивания динамического ряда аналитическим способом является оценка точности аппроксимации с определенным уровнем значимости.

Оценка точности аппроксимации возможна с помощью нахождения

Для получения точной оценки необходимо найти такие величины:

а) коэффициент вариации:

где  у- фактический уровень ряда;

yt — теоретический уровень ряда;

k- число параметров уравнения;

n- число уровней ряда.

Аппроксимация считается точной при Cv не более 15%.

б) коэффициент расхождения Тейла:

где      у — фактический уровень ряда;

yt — теоретический уровень ряда.

Аппроксимация считается точной при U не более 5%

После аналитического выравнивания динамического ряда и описания тренда возможно экстраполировать полученные данные.

Экстраполяция — предположение о сохранении тренда, базирующееся на допущении неизменности влияющих факто­ров и предшествующей тенденции.

Осуществляется путем подставления в найденное уравнение аппроксимации не фактического значения временного интервала, а предполагаемого порядкового номера (ранг) того периода, на который прогнозируется результат.

 Вычисление основных показателей динамического ряда

Алгоритм вычислений ведущих параметров динамических рядов:

Условные обозначения:

yi- текущий уровень (сравниваемый);

уi-1— базисный уровень (с каким сравнивают);

t- период времени, в течение которого уровень предполагается неизменным.

1.Абсолютный прирост (убыль) :

2.Темп роста (убыли):

3.Темп прироста (относительная скорость), темп убыли :

4.Средний темп прироста (убыли):

где      а0; а1 — параметры уравнения;

k = 1 при нечетном ряде;

k = 2 при четном ряде.

5.1% прироста (убыли): используются при сравнении динамических рядов с уровнями, выраженными различными обобщающими коэффициентами.

Таким образом, с помощью данного руководства по определению и расчетам такого понятия, как, динамические ряды, специалисты различных отраслей медицины, ученые могут эффективно и быстро оценить изменение различных величин в течение времени.

Благодарим за интерес, проявленный к нашей статье, оставайтесь с нами!

Если Вам понравилась статья и оказалась полезной, Вы можете поделиться ею с коллегами и друзьями в социальных сетях:

Источник: https://lit-review.ru/biostatistika/dinamicheskie-ryady/

Аналитическое выравнивание рядов динамики – часть 2

Выравнивание Рядов Динамики

Более совершенным приемом выявленияосновнойтенденции развития в рядах динамики является аналитическое выравнивание.

При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления.

На практике по имеющемуся временному ряду задают вид и находят параметры функции y=f(t), а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости: линейная, параболическая и экспоненциальная.

Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции.

В таких случаях следует использовать гармонический анализ (гармоники ряда Фурье). Применение, именно, этого метода предпочтительно, поскольку он определяет закон, по которому можно достаточно точно спрогнозировать значения уровней ряда.

Целью же аналитического выравнивания динамического ряда является определение аналитической или графической зависимости y=f(t). Функцию y=f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса. Это могут быть различные функции.

Графическое представление полиномов n-порядка

1. Если изменение уровней ряда характеризуется равномерным увеличением (уменьшением) уровней, когда абсолютные цепные приросты близки по величине, тенденцию развития характеризует уравнение прямой линии.

2. Если в результате анализа типа тенденции динамики установлена криволинейная зависимость, примерно с постоянным ускорением, то форма тенденции выражается уравнением параболы второго порядка.

3. Если рост уровней ряда динамики происходит в геометрической прогрессии, т.е. цепные коэффициенты роста более или менее постоянны, выравнивание ряда динамики ведется по показательной функции.

После выбора вида уравнения необходимо определить параметры уравнения. Самый распространенный способ определения параметров уравнения — это метод наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими (выравненными по выбранному уравнению) и эмпирическими уровнями.

Выравнивание по прямой (определение линии тренда) имеет выражение: yt=a0+a1t 

  • t—условное обозначение времени;
  • а0 и a1—параметры искомой прямой.

Параметры прямой находятся из решения системы урав­нений:

Система уравнений упрощается, если значения t подоб­рать так, чтобы их сумма равнялась Σt = 0, т. е. начало отсчета времени перенести в середину рассматриваемого периода. Если до переноса точки отсчета t = 1, 2, 3, 4…, то после переноса:

  • если число уровней ряда нечетное   t = -4 -3 -2 -1  0 +1 +2 +3 +4
  • если число уровней ряда четное        t = -7 -5 -3 -1 +1 +3 +5 +7

Таким образом, ∑t в нечетной степени всегда будет равна нулю.

Аналогично находятся параметры параболы 2-го порядка  из решения системы урав­нений:

Выравнивание по среднему абсолютному приросту  или среднему коэффициенту роста:

  • Δ-средний абсолютный прирост; 
  • К-средний коэффициент роста;
  • У0-начальный уровень ряда;
  • Уn-конечный уровень  ряда;
  • t-порядковый номер уровня, начиная с нуля. 

Построив уравнение регрессии, проводят оценку его надежности. Значимость выбранного уравнения регрессии, параметров уравнения и коэффициента корреляции  следует оценить, применив критические методы оценки: 

F-критерий Фишера, t–критерий Стьюдента, при этом, расчетные значения критериев сравниваются с табличными (критическими) при заданном уровне значимости и числе степеней свободы. Fфакт > Fтеор – уравнение регрессии адекватно.

n — число наблюдений (уровней ряда), m — число параметров уравнения (модели) регрессии.

Проверка адекватности уравнения регрессии ( качества модели в целом) осуществляется с помощью средней ошибки аппроксимации, величина которой  не должна превышать 10-12% (рекомендовано).

Рассмотрим на примере аналитическое выравнивание ряда динамики по прямой с переносом точки отсчета в середину ряда:

ГодыОбъем валовой продукции            Условноеобозн. годаРасчетные значенияВыровненный ряд
Yitt2Y*tỸ=209,06+3,91t
1990187,8-525-939,00189,51
1991185,7-416-742,94193,42
1992195,8-39-587,29197,33
1993207,9-24-415,80201,24
1994208,3-11-208,32205,15
1995208,6000,00209,06
1996219,711219,70212,97
1997218,524437,00216,88
1998222,239666,60220,79
1999225,1416900,40224,7
2000220,05251100,00228,61
Итого2299,620110430,352299,62
ΣYiΣtΣt2ΣY*tΣỸ

Решение системы линейных уравнений:

Σt в нечетной степени всегда равна нулю, поэтому система уравнений упрощается и принимает следующий вид:

Сумма уровней выровненного ряда должна равняться сумме уровней исходного ряда, что, в свою очередь, подтверждает правильность расчетов. Выровненный ряд динамики по прямой вида (линейный тренд): Ỹ=209,06+3,91t

Смотри  аналитическое выравнивание на примере: 

Источник: https://helpstat.ru/analiticheskoe-vyravnivanie-ryadov-dinamiki-page-2/

Ряды динамики

Выравнивание Рядов Динамики

Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика. Эта задача решается при помощи анализа рядов динамики (временных рядов).

Ряд динамики (или временной ряд) – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).

Числовые значения того или иного статистического показателя, составляющего ряд динамики, называют уровнями ряда и обычно обозначают буквой y. Первый член ряда y1 называют начальным или базисным уровнем, а последний yn – конечным. Моменты или периоды времени, к которым относятся уровни, обозначают через t.

Ряды динамики, как правило, представляют в виде таблицы или графика, причем по оси абсцисс строится шкала времени t, а по оси ординат – шкала уровней ряда y.

Пример ряда динамики

Таблица. Число жителей России в 2004-2009 гг. в млн.

чел, на 1 января

Год200420052006200720082009
Число жителей144,2143,5142,8142,2142,0141,9

График ряда динамики числа жителей России в 2004-2009 гг. в млн.чел, на 1 января

Данные таблицы и графика наглядно иллюстрируют ежегодное снижение числа жителей России в 2004-2009 годах.

Виды рядов динамики

Ряды динамики классифицируются по следующим основным признакам:

  1. По времени — ряды моментные и интервальные (периодные), которые показывают уровень явления на конкретный момент времени или на определенный его период. Сумма уровней интервального ряда дает вполне реальную статистическую величину за несколько периодов времени, например, общий выпуск продукции, общее количество проданных акций и т.п. Уровни моментного ряда, хотя и можно суммировать, но эта сумма реального содержания, как правило, не имеет. Так, если сложить величины запасов на начало каждого месяца квартала, то полученная сумма не означает квартальную величину запасов.
  2. По форме представления — ряды абсолютных, относительных и средних величин.
  3. По интервалам времени — ряды равномерные и неравномерные (полные и неполные), первые из которых имеют равные интервалы, а у вторых равенство интервалов не соблюдается.
  4. По числу смысловых статистических величин — ряды изолированные и комплексные (одномерные и многомерные). Первые представляют собой ряд динамики одной статистической величины (например, индекс инфляции), а вторые — нескольких (например, потребление основных продуктов питания).

В нашем примере про число жителей России ряд динамики: 1) моментный (приведены уровни на 1 января); 2) абсолютных величин (в млн.чел.); 3) равномерный (равные интервалы в 1 год); 4) изолированный.

Анализ рядов динамики начинается с определения того, как именно изменяются уровни ряда (увеличиваются, уменьшаются или остаются неизменными) в абсолютном и относительном выражении. Чтобы проследить за направлением и размером изменений уровней во времени, для рядов динамики рассчитывают показатели изменения уровней ряда динамики:

  • абсолютное изменение (абсолютный прирост);
  • относительное изменение (темп роста или индекс динамики);
  • темп изменения (темп прироста).

Все эти показатели могут определяться базисным способом, когда уровень данного периода сравнивается с первым (базисным) периодом, либо цепным способом – когда сравниваются два уровня соседних периодов.

Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда, определяется по формуле

Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-того) периода больше или меньше первого (базисного) уровня, и, следовательно, может иметь знак «+» (при увеличении уровней) или «–» (при уменьшении уровней).

Цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда, определяется по формуле

Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-того) периода больше или меньше предыдущего уровня, и может иметь знак «+» или «–».

В следующей расчетной таблице в столбце 3 рассчитаны базисные абсолютные изменения, а в столбце 4 – цепные абсолютные изменения.

Годy, %,%
2004144,2
2005143,5-0,7-0,70,9950,995-0,49-0,49
2006142,8-1,4-0,70,9900,995-0,97-0,49
2007142,2-2,0-0,60,9860,996-1,39-0,42
2008142,0-2,2-0,20,9850,999-1,53-0,14
2009141,9-2,3-0,10,9840,999-1,60-0,07
Итого-2,30,984-1,60

Между базисными и цепными абсолютными изменениями существует взаимосвязь: сумма цепных абсолютных изменений равна последнему базисному изменению, то есть

.

В нашем примере про число жителей России подтверждается правильность расчета абсолютных изменений: = — 2,3 рассчитана в итоговой строке 4-го столбца, а = — 2,3 – в предпоследней строке 3-го столбца расчетной таблицы.

Базисное относительное изменение (базисный темп роста или базисный индекс динамики) представляет собой соотношение конкретного и первого уровней ряда, определяясь по формуле

Цепное относительное изменение (цепной темп роста или цепной индекс динамики) представляет собой соотношение конкретного и предыдущего уровней ряда, определяясь по формуле

.

Относительное изменение показывает во сколько раз уровень данного периода больше уровня какого-либо предшествующего периода (при i>1) или какую его часть составляет (при i

Источник: https://chaliev.ru/statistics/ryady-dynamiki.php

Ряды динамики (5)

Выравнивание Рядов Динамики

В экономической практике часто возникает необходимость сравнения между собой нескольких рядов динамики (например, показатели динамики производства электроэнергии, производства зерна, продажи легковых автомобилей и др.).

Для этого нужно преобразовать абсолютные показатели сравниваемых рядов динамики в производные ряды относительных базисных величин, приняв показатели какого-либо одного года за единицу или за 100%.

Такое преобразование нескольких рядов динамики называется приведением их к одинаковому основанию.

Теоретически за базу сравнения может быть принят абсолютный уровень любого года, но в экономических исследованиях для базы сравнения надо выбирать период, имеющий определенное экономическое или историческое значение в развитии явлений. В настоящее время за базу сравнения целесообразно принять, например, уровень 1990 г.

Методы выравнивания рядов динамики

Для исследования закономерности (тенденции) развития изучаемого явления необходимы данные за длительный период времени. Тенденцию развития конкретного явления определяет основной фактор.

Но наряду с действием основного фактора в экономике на развитие явления оказывают прямое или косвенное влияние множество других факторов, случайных, разовых или периодически повторяющихся (годы, благоприятные для сельского хозяйства, засушливые и т.п.).

Практически все ряды динамики экономических показателей на графике имеют форму кривой, ломаной линии с подъемами и снижениями. Во многих случаях по фактическим данным ряда динамики и по графику трудно определить даже общую тенденцию развития.

Но статистика должна не только определить общую тенденцию развития явления (рост или снижение), но и дать количественные (цифровые) характеристики развития.

Тенденции развития явлений изучают методами выравнивания рядов динамики:

  • Метод укрупнения интервалов
  • Метод скользящей средней
  • Метод аналитического выравнивания

В табл. 11.7 (гр. 2) приведены фактические данные о производстве зерна в России за 1981- 1992 гг. (во всех категориях хозяйств, в весе после доработки) и расчеты по выравниванию этого ряда тремя методами.

Метод укрупнения интервалов времени (гр. 3)

Учитывая, что ряд динамики небольшой, интервалы взяты трехлетние и для каждого интервала исчислены средние.

Среднегодовой объем производства зерна по трехлетним периодам исчислен по формуле средней арифметической простой и отнесен к среднему году соответствующего периода. Так, например, за первые три года (1981 — 1983 гг.) средняя записана против 1982 г.

: (73,8+ 98,0+104,3) : 3= 92,0 (млн. т). За следующий трехлетний период (1984 — 1986 гг.) средняя (85,1 +98,6+ 107,5) : 3= 97,1 млн. т записана против 1985 г.

За остальные периоды результаты расчета в гр. 3.

Приведенные в гр. 3 показатели среднегодового объема производства зерна в России свидетельствуют о закономерном увеличении производства зерна в России за период 1981 — 1992 гг.

Метод скользящей средней

Метод скользящей средней (см. гр. 4 и 5) также основан на исчислении средних величин за укрупненные периоды времени. Цель та же — абстрагироваться от влияния случайных факторов, взаимопогасить их влияние в отдельные годы. Но метод расчета другой.

В приведенном примере исчислены пятизвенные (по пятилетним периодам) скользящие средние и отнесены к серединному году в соответствующем пятилетнем периоде. Так, за первые пять лет (1981-1985 гг.

) по формуле средней арифметической простой исчислен среднегодовой объем производства зерна и записан в табл. 11.7 против 1983 г.(73,8+ 98,0+ 104,3+ 85,1+ 98,6): 5= 92,0 млн. т; за второй пятилетний период (1982 — 1986 гг.) результат записан против 1984 г.

(98,0 + 104,3 +85,1 + 98,6 + 107,5):5 =493,5:5 = 98,7 млн. т.

За последующие пятилетние периоды расчет производится аналогичным способом путем исключения начального года и прибавления следующего за пятилетним периодом года и деления полученной суммы на пять. При этом методе концы ряда остаются пустыми.

Какой продолжительности должны быть периоды времени? Три, пять, десять лет? Вопрос решает исследователь. В принципе, чем больше период, тем больше происходит сглаживание.

Но надо учитывать длину ряда динамики; не забывать, что метод скользящей средней оставляет срезанные концы выравненного ряда; учитывать этапы развития, например, в нашей стране долгие годы социально-экономическое развитие планировалось и соответственно анализировалось по пятилеткам. Таблица 11.7 Выравнивание данных о производстве зерна в России за 1981 — 1992 гг. (таблица )

Метод аналитического выравнивания

Метод аналитического выравнивания (гр.6 — 9) основан на вычислении значений выравненного ряда по соответствующим математическим формулам. В табл. 11.7 приведены вычисления по уравнению прямой линии:

Для определения параметров надо решить систему уравнений:

Необходимые величины для решения системы уравнений вычислены и приведены в таблице (см. гр.6 — 8), подставим их в уравнение:

В результате вычислений получаем: α= 87,96; b = 1,555.

Подставим значение параметров и получим уравнение прямой:

Для каждого года подставляем значение t и получаем уровни выравненного ряда (см. гр.9):

Рис. 11.2. Производство зерна в России за 1981-1982 гг.

В выравненном ряду происходит равномерное возрастание уровней ряда в среднем за год на 1,555 млн.т (значение параметра «b»). Метод основан на абстрагировании влияния всех остальных факторов, кроме основного.

Явления могут развиваться в динамике равномерно (рост или снижение). В этих случаях чаще всего подходит уравнение прямой линии.

Если же развитие неравномерно, например, сначала очень медленный рост, а с определенного момента резкое возрастание, или, наоборот, сначала резкое снижение, а затем замедление темпов спада, то выравнивание надо выполнить по другим формулам (уравнение параболы, гиперболы и др.).

При необходимости надо обратиться к учебникам по статистике или специальным монографиям, где более подробно изложены вопросы выбора формулы для адекватного отражения фактически сложившейся тенденции исследуемого ряда динамики.

Для наглядности показатели уровней фактического ряда динамики и выравненных рядов нанесем на график (рис. 11.2). Фактические данные представляет ломанная линия черного цвета, свидетельствующая о подъемах и снижениях объема производства зерна.

Остальные линии на графике показывают, что применение метода скользящей средней (линия со срезанными концами) позволяет существенно выровнять уровни динамического ряда и соответственно на графике ломаную кривую линию сделать более плавной, сглаженной. Однако выравненные линии все же остаются кривыми линиями.

Построенная на базе теоретических значений ряда, полученных по математическим формулам, линия строго соответствует прямой линии.

Каждый из трех рассмотренных методов имеет свои достоинства, но в большинстве случаев метод аналитического выравнивания предпочтителен.

Однако его применение связано с большими вычислительными работами: решение системы уравнений; проверка обоснованности выбранной функции (формы связи); вычисление уровней выравненного ряда; построение графика, Для успешного выполнения таких работ целесообразно использовать компьютер и соответствующие программы.

Источник: https://www.std72.ru/dir/statistika/obshhaja_teorija_statistiki/rjady_dinamiki_5/34-1-0-434

Ряды динамики в статистике

Выравнивание Рядов Динамики

Статистика занимается не только обработкой накопленных данных, но и нахождением тенденций в различных парных показателях, которые связаны друг с другом, что успешно решается применением инструмента «ряды динамики в статистике».

Классическим примером является изменение каких-либо показателей за определенный промежуток времени, что в конце концов сводится не к изучению попарной зависимости (показатель — время), а к изучению изменений показателей в динамике.

  • Понятие о рядах динамики
  • Пример ряда динамики и его характеристика
  • Виды рядов динамики
  • Правила построения рядов динамики
  • Средние характеристики ряда динамики
  • Показатели анализа рядов динамики
  • Анализ сезонных колебаний
  • Приведение рядов динамики к одинаковому основанию
  • Аналитическое выравнивание ряда динамики
  • Примеры решения задач на тему «Ряды динамики в статистике»

Понятие о рядах динамики

Строгое понятие для ряда динамики обозначено в статистике так.

Динамические ряды (иными словами ряд динамики или временной ряд) – это распределенные в увеличивающемся порядке дискретных значений выбранного статистического параметра за последовательные временные промежутки.

Если рассмотреть динамический ряд, будет очевидно, что он наполнен данными в формате y1t1, y2t2, y3t3…yntn. Применительно к временному ряду, значением у будет называться «уровень ряда», при этом первый член ряда (у1) называется базисным (начальным) уровнем, а уn – конечным уровнем. Через обозначение t будет обозначаться временной показатель, который соответствует каждому из уровней ряда.

При построении графической зависимости временного ряда, функция будет иметь вид t(y), где по оси y (ординат) будут отложены значения уровней ряда (параметр у), а по оси х (ось абсцисс) будут отложены временные значения параметра t.

Пример ряда динамики и его характеристика

В качестве примера, рассмотрим следующий ряд.

Таблицу можно озаглавить так: «Годовой выпуск препарата «Ибупрофен» в 2013-2018гг. в млн. уп.»

Год201320142015201620172018
Годовой объем выпуска, млн. уп.88,191,396,599,3101,8100,7

В данном ряду можно обнаружить присутствие следующих показателей:

  • имеется показатель t, которому соответствует строка «Год», содержащая информацию о периоде, за который выпускался препарат «Ибупрофен»;
  • имеется показатель у, который показывает годовой объем производства препарата «Ибупрофен»;
  • показатели t и у соотнесены.

На основании изложенного, можно сделать вывод, что перед нами находится временной ряд.

Правила построения рядов динамики

Когда производится построение временных рядов, то для них должны соблюдаться общие требования:

  1. Составитель должен придерживаться принципа периодизации развития, когда разбивка на временные этапы должна быть как можно более однородной и подчиняться единому принципу развития. При этом могут использоваться методы параллельной периодизации, многомерного статистического анализа, а также исторический метод.
  2. Данные, которые объединяются в многомерный временной ряд, должны обеспечивать возможность сопоставления между собой. Иными словами, должен быть определенный общий признак, например, территориальность, единицы измерения и др.
  3. Временные интервалы должны быть гармонично подобраны в соответствии с вариативностью наблюдаемой характеристики. Это значит, что для величины, которая слишком часто меняет свое значение, интервал должен быть чаще, а для стабильной величины его следует сделать шире.
  4. Следует соблюдать систематизацию по временной характеристике – не допускать пропуска временных точек, а если таковые возникли, то интерполировать значения внутри пропущенного интервала.

Средние характеристики ряда динамики

Главный показатель, характеризующий среднее значение абсолютных показателей (y1, y2…yn) – это средний уровень ряда. Если основные интервалы не изменялись, то следует пользоваться выражением для расчета (где t – количество уровней):

Чуть сложнее будет выглядеть методика расчета, если были временные пропуски или они неравны. Вычисления выполняются через арифметическую взвешенную:

Здесь y1, y2…yn – это абсолютные уровни ряда, а t1, t2…tn – протяженности временных интервалов.

Для описания удобно пользоваться параметром среднего абсолютного прироста, представляющим собой среднее от прироста за равные временные промежутки. Когда использованы гармоничные интервалы, формула выглядит так:

Для приведенного выражения обозначение n – это число приростов за выбранный период.

Также есть методика расчетов с использованием базисного абсолютного прироста при равенстве интервалов для смыкания рядов:

Значение m – это количество уровней в выбранном периоде.

Показательная характеристика — средний темп роста, он отображает как происходило изменение уровней рядя (коррелируя с единицами времени). Вычисления для цепных показателей выведены через расчет средней геометрической:

В данном выражении n — количество цепных коэффициентов, Кц – сами цепные коэффициенты.

Когда даны все значения уровней, то выражение значительно упрощается:

Иногда требуется охарактеризовать срединный темп прироста, рассчитывающийся по уравнению на основании уже известных средних темпов роста (Тр):

Показатели анализа рядов динамики

Всего имеются 5 характеристик, предназначающихся для выполнения анализа:

  • абсолютный прирост – это параметр, получающийся при нахождении разности определенного уровня и базисного (или тем, который следует до него). Возможен ответ со знаком «-». Выражения для расчета выглядят так:
  • коэффициент роста – значение, которое характеризует, в какое количество раз увеличился (или снизился) конкретно взятый для анализа уровень по сравнению с базисным или любым другим (например, идущим перед выбранным). Формула сводится к делению значения анализируемого уровня на значение базисного (отношение уровней):
  • темп роста – характеризует процентное соотношение анализируемого показателя в сопоставлении с базисным. Вычисления выполняются перемножением значения коэффициента роста на сто процентов;
  • темп прироста – процентный порог возрастания или снижения значения уровня в сопоставлении с базисным. При обсчете необходимо из 100 вычесть показатель темпа роста;
  • абсолютное значение 1% прироста будет получено при делении абсолютного прироста на темп прироста. Эти характеристики не относятся к обязательным элементам.

Анализ сезонных колебаний

Если взять для анализа временной ряд, в котором собраны объемы продаж противовирусных препаратов за 5 лет, то будет очевидно, что ежегодно происходят колебания (снижение или увеличение) продаж, которые повторяются. Такие колебания будут именоваться сезонными.

Чтобы устранить нежелательное влияние таких колебаний, проводится аналитическое изучение, выполняющееся либо с помощью гармонического исследования, либо с учетом индекса сезонности.

Индекс сезонности — это фактическая характеристика того, в какое количество раз анализируемый уровень увеличен или уменьшен относительно срединного:

Тут Yt – это уровень, предполагаемый к анализу, а Ȳ — это средний уровень всего ряда.

Более сложный анализ предполагает выделение гармонических колебаний. Для этого производится выравнивание по ряду Фурье (так называемые «гармоники»), и высчитывают, какие гармоники наиболее сопоставимы с анализируемым рядом. Общий вид ряда Фурье для двух гармоник выражается формулой:

Индекс сезонности

Для того чтобы не вычислять относительную разницу в процентах между каждым месяцем во временном ряду, можно вычислить один параметр – индекс сезонности.

Индекс сезонности рассчитывается на основании следующих показателей:

  • среднего по анализируемому показателю в указанный временной промежуток за три и более года (yi);
  • среднего значения анализируемого показателя внутри одного временного периода (года) – y.

По результатам сопоставления получается значение, которое так или иначе соотносится с уровнем в 100%. Если присутствует значимое отклонение в меньшую сторону, то это является свидетельством присутствия сезонного колебания.

Приведение рядов динамики к одинаковому основанию

Во время работы с несколькими явлениями, описывающими один процесс, может вызывать интерес сопоставление рядов динамики. С целью корректного сопоставления потребуется приведение к одному основанию. Сопутствующей операцией является вычисление коэффициента опережения или отставания.

К каждому ряду находится базисный уровень и вычисляются темпы роста и прироста рядов. Для каждого ряда должен быть выбран аналогичный временной интервал.

Сравнение проводится на основании отношения базисного темпа роста (опционально – прироста) в аналогичном временной интервале. Выражения для расчета достаточно просты:

Аналитическое выравнивание ряда динамики

При определении каких-либо закономерностей во временных рядах и возможности прогнозирования отдельных тенденций, применяется методика аналитического выравнивания. С этой целью производится приближение к определенной алгебраической зависимости, наиболее точно описывающей ряд.

Методика укрупнения интервалов представляет собой преобразование, когда временные промежутки делаются более длительными, что позволяет более точно оценить общий вектор тенденции и понять, какое направление будет иметь зависимость.

Методика скользящей средней основана на особенности временных рядов погашать случайные отклонения от среднего уровня. Каждому звену с использованием простого среднеарифметичнского значения нужно рассчитывать уровень, в котором рандомные колебания сведены к минимуму.

Методика аналитического выравнивания — под конкретный ряд подбирается зависимость, которая более полно отражает алгебраическую зависимость.

Примеры решения задач на тему «Ряды динамики в статистике»

Классическим упражнением является определение вида и показателей для ряда динамики.

Задача. Для указанного временного ряда высчитать: его вид, цепной и базисный прирост, темп роста/прироста, средний темп прироста.

Отчетный годСуммарный объем производства, млрд. руб.
201418
201516
201617
201716
201812

Согласно определению, этот ряд динамики относится к интервальному, поскольку в условии приведен четкий промежуток времени. Произведем расчет показателей.

Абсолютные показатели

Абсолютные приросты (по цепному способу):

16 – 18 = — 2 млрд. руб.

17 – 16 = 1 млрд. руб.

16 – 17 = — 1 млрд. руб.

12 – 16 = — 4 млрд. руб.

Абсолютные приросты (по базисному методу):

16 – 18 = -2 млрд. руб.

17 – 18 = — 1 млрд. руб.

16 – 18 = -2 млрд. руб.

12 – 18 = — 6 млрд. руб.

Относительные показатели

Цепные темпы роста:

16/18 х 100 = 88,8%;

17/16 х 100 = 106%;

16/17 х 100 = 94,1%;

12/16 х 100 = 75%.

Базисные темпы роста:

16/18 х 100 = 88,8%;

17/18 х 100 = 94,4%;

16/18 х 100 = 88,8%;

12/18 х 100 = 66,6%.

Цепные темпы прироста:

-2/18 х 100 = -11,1%;

1/16 х 100 = 6,25%;

-1/17 х 100 = -5,88%;

4/16 х 100 = 25%.

Базисные темпы прироста:

-2/18 х 100 = -11,1%

1/18 х 100 = 5,55%

-2/18 х 100 = -11,1%

-6/18 х 100 = -33,3%

Средний уровень временного ряда:

(18 + 16 + 17 + 16 + 12) / 5 = 15,8.

Среднегодовой абсолютный прирост:

(12 — 18) / (5 — 1) = -1,5 млрд. руб.

Среднегодовой темп прироста:

90.36 – 100 = -9.64%.

Таким образом временные ряды занимают важное место среди статистических объектов.

Основное их преимущество заключается в широком практическом применении, которое позволяет использовать ряды динамики для наблюдений за физическими величинами и экономическими показателями. Важно знать о нюансах, которые помогут правильно проанализировать такие ряды.

Источник: https://101student.ru/ekonomika/ryady-dinamiki-v-statistike.html

Все термины
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: